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Shock waves have been the subject of many investigations; of these, we only
mention papers [1 to 5].

The present paper amplifies on the basic ideas proposed in [6] for the
investigation of the structure of shock waves in a viscous gas. It appears
that for a hypoelastic medium, within small strain accuracy, all discontinu-
ous quantities inside a shock wave layer, vary in a similar manner. This
circumstance permits the investigation of shock wave propagation in a hypo-
elstic medium.

The equations thus obtalned are used to study the structure of a transverse
shock wave in a Kelvin medium.

1. In order to investigate the structure of shock waves, we introduce a
moving coordinate system (11’ Xz, %) whose origin lles on some middle sur-
face I , which 18 located within the shock wave layer with the (xl, Xa)
plane tangent to that surface.

Utilizing the symbol & to denote differentiation with respect to time,
the equations of conservation of mass and momentum, respectively, take the

rorm 0 (va— G+ (pra), o + g =0 (1.1)

Gis, 3 "‘F Ciz,a = P (U3_ G) Ui, 3 + PUaVi a + Y 652): (1'2)

Within the shock wave layer, the first term in the left-hand side of (1.1)
and the first terms in the left- and right-hand sides of (1.2) are large in
comparison with the remaining terms.

In the case of unsteady flow, the middle surface I will move with velo-
city ¢ . The distance from the leading shock front surface to I wlll be
denoted by h', and that from the trailing shock front surface to I , by n .
Hence, the sum (»*+ »~) = » 1is the shock layer thickness. It 1s assumed
that the position of the surface I at any given time 1s known from nonvis-
cous flow considerations. As the viscosity goes to zero, both shock fronts
approach to the surface I .
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The various discontinuous functions generally undergo their basic changes
at different distances from I . Therefore, each discontinuous function has
its own corresponding shock layer thickness. We denote the shock layer
thicknesses for p, v, and o,, by »*, h,i and h,'f , respectively, the
full thicknesses beling given by

h* + W= h, k; + h.{' = hi, hij+ -+ hij- = hij (13)

Let p*, v,* and o,,* be, respectively, the density, velocity and stresses
on L . Then the thicknesses of the shock layer are given by

-«

* * vt _—p° st —a,
L p~ —p . i K L] — if if 1.4
p, 3 + Bt v Uiy = + BT ! cii; 3 + h{i] ( )

Here 1t is assumed that the gradients of the various functions within the
shock wave are large while the corresponding thicknesses are small. It should
be noted that thils is not the only way of specifying the shock layer thick-
nesess.

Certaln relations may be established among the various shock layer thick=
nesses. Thus, neglecting higher order quantities in (1.1) and (1.2), we
obtain

p,3(vs — G) + PlUg 3 = 0, Oi3,3 = P (vs — G) Vi3 (1‘5)
To (1.5), we adjoin the results of integrating these equations across the
shock layer
p(vs—G) =C, o3 = Cv; + C; (1.6)
Substituting (1.%) into (1.5) and utilizing (1.6), we obtain
hi = h*p* [p*,  hf=hij (1.7

For hlgh density gases, liquids and other rheologlcal substances, there is
little variation in density across the shock wave, so that (1.7) ylelds
kgt ~ h*t. For an ideal gas, O = Opy = O3 8&nd g3 = 0, so that
hyE = Ryt = hget, and (1.7) ylelds

RE > hi = B = hip = b3 (1.8)
Thus, for shock wave propagation in an i1deal gas, the basic change in all

discontinuous quantities takes place at the same distance from I .

Hereinafter we wlll need certain relations between thicknesses for discon-
tinuous functions .7" and ®, which are linearly interrelated by

@ = Ayf; + By, | Ai| 0 (1.9)

The quantities 4,, and p, are independent of x,

Lemma 1 . If the shock layer thicknesses h* and n~ are the same
for all functions [, then the thicknesses »,* and »,” for all functions
@; will also be »* and A™, respectively.

Lemma 2. If all functions [, vary in a similar manner within the
shock layer, l.e. ir [/,- J,*= J[/,] , then the functions ¢, also vary in
a simllar menner inside the shock layer, with o,~ ¢,*=vl@,] , and the same
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shock layer thickness 1s obtained for all the functions J, and g,
h=1/vg* B = —v*/v* B =14y /v (1.10)
From these Lemmas 1t follows that, within small strain accuracy, all dis=-

continuous quantities 1nside a shock layer propagating 1n an elastlic medium,
vary in a similar manner, and have the same thicknesses.

In order to obtaln the basic equatlons for the purpose of studying the
shock wave structure, Equations {1.1) and {1.2) are integrated wilth respect
to x; . Taking into account (1.7), we obtain

p(vg— G) = C —g, C=p" (v — G) (1.11)
9= 5 {ov s+ Ehdn,  —I<zm<ht (1.12)
het
Giz— Cvj == C;— @y, Ci=o0y"— Cv;* (1.13)
@) = g: {cig, o — PUsU; 5 — P 6;; } dzy -} g: Qdv;, —h <zs< hy (1.14)

3

The integrand in (1.10) is finite, and the interval of integration is
small, so that ¢ 1s small. For the same reason, the first integral (1.12)
1s small. The second integral in (1.12) is small, because g 1s small.
Thus, ® and ¢, are small functions defined within the shock layer.

Noting that, for a shock wave of zerc thickness, the dynamlec conditions
for the discontinulties [7] are given by

[p (v — G)] =0, [oig — Cv;] = 0 (1.15)
we may consider the immediately preceding equations to be a first approxima-~
tion for shock waves of small thickness. Hence, we conclude from {1.11) and
{(1.13) that ¢ and ¢, vanish on both fronts of the shock layer. Assuming
that these functlons are nonzero everywhere within the shock layer, we may
approximate these functions by parabolas, obtaining

0= (@ — W) (@40, A=[(va)a o] (116)

Az -
¢ = Ei (g — I (@5 + )

4= [o0, o poaria— 05|+ flor0ah), o+ S el (D)

The quantities ¢ and ¢, become ldentically zero for one-dimensional
steady flow. These small functions make an essential contribution for a
shock wave with small discontinuities, when their values in (1.11) and (1.13)
increase.

For h, hy and h,, - 0, (1.11) and (1.13) become (1.16), provided ¢
and @, ~0 . To satisfy this condition, it 1is sufficlent that the integrands
in {1.12) and (1.1%) be finite everywhere inside the shock layer, which in
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turn requires the boundedness of:
a)} density
b} tangential veloclty components on L
¢) stresses on any element of area lying on I , with arbitrary normal.

For one-~dimensional flow, two of the preceding conditlions are satisfied
Independently of the properties of the medium. In that case, if the consti-
tutive equations do not preclude the possibllity of the existence of shock
waves of zero thickness, then the propagaetion of such waves is possible.

In the solution of the viscous flow problem within the shock layer, it 1s
assumed that the values of p, v, and o0,, on the leading and trailing shock
fronts, respectively, coincide with the values of these quantities in front
and behind the shock wave as obtained from the nonviscous flow problem; thus,
the viscous effects are zero on both fronts. Consequently, the problem con-
cerning the structure of the shock wave ig reduced to the determination of

viscous effects as a function of position within the shock wave, these effects
vanishing at both shock fronts where x;=x HT.

If ¢, g, and nonlinear terms are neglected in (1.11),(1.13) and in the
constitutive equations of the Kelvin medium, we find that the viscous effects
vanish identically within the shock layer. Then the problem of the structure
of the shock wave becomes meaningless, Therefore, it 1s necessary, in for-
mulating the problem on the shock wave structure, to include the nonlinear
terms 1n the equations pertaining to the structure of the shock layer. Hence
it follows that the thickness and structure of & shock wave in a Kelvin
medium are second order effects.

2. In hypoelastic, elasto-plastic and many other media it 1is impossible to
determine the speed of propagation of shock waves [8]. We will show for the
hypoelastic medium that by adjoining a viscous element in parallel with the
hypoelastic element and utilizing the theory on shock wave structure the
indeterminacy can be removed.

The constitutive equations for a hypoelastic medium may be written in the

form [ 9] Ds:; .
” = }\,8/@,@6” + 2]181], 285]- = Vi, 5+ Vj,4 (21)
Following Jaumann, covariant differentiation with respect to time in a
moving coordinate system ylelds

Ds;; 1
—D‘%‘ = (vg— G) 6ij,3 -+ VuGij, « + Ohj (Uk i Ui,h) Y Okri (Uh i— Uy, k) (...._.)

Dividing (2.1) by (vs— ¢) and integrating with respect to x, from the
trailing wave front to the leading one, we obtain

Lﬂ% L Pun + 3ﬂm 1(Em+Pm%=Mﬁu+H®N}+%LH1$
2

Here
vt y 1’;“‘ J
= { cudve = \ Vi 2.4
Dk" l‘i'

If nonlinear terms in (2.1) are neglected, then we must set P,yy= 0 in
(2.3). In that case, we obtain the same shock waves as in a linear elastlc
medium. If the influence of nonlinear terms in (2.1) 1s to be taken into
account, then P;;, and J, must be evaluated. In that case, the initial
assumption is made that the flow taking place inside the shock wave is
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viscous, the corresponding rheological model consisting of a combination of
hypoelastic element and a viscous element in parallel.

Upon solving the problem concerning shock wave structure, integration of
(2.4) ylelds P,,, and Jo - Then, letting the coefficlent of viscosity go
to zero, we obtaln the limiting values of the above quantities, the shock
wave thickness again becoming zero.

Completing the investigation of the shock wave structure and neglecting
nonlinear terms in the constitutive equations (2.1), then utilizing Lemma 2,

we obtain vi— vt 845 — G5t / "
N % =v(@n ), — 1<y (2.5)
Substituting (2.5) into (2.%) for [vy] # O , we obtain
ol et =6 o [oi] [ox] Sij™ (93" — 6) — 535" (95~ — G) 5
Jl - [7}3] IH Py — G ’ th - [va] + [273} Jk (_..6)
If [v,] = 0, then (2.4) yields
[v4 1 . -
i = vs_:]G v P =0, ot = 5 (i +oi7) (2.7)

Censider propagation of the longitudinal shock wave for [Da] = 0 and for
[vs] # 0. 1In that case, Py, = J, = 0 , and consequently, the rotation of
the medium does not affect the shock waves propagation. Solving (1.15)
together with (2.3) and (2.6), we obtain

. ot - 2
{Gim]:'O? h’ly ZE"{T’ y:—g—_—"%’ :% (28)
For given vsi and p~, {(2.8) yields two values, y, and y, , correspond-
ing to two possible propagation speeds of longitudinal shock wave in hypo-
elastic media. It 1s readily established that y,2 1, y,s1 . A study of
these inequalities reveals that the {irst condition is realized if v,;~ is
between ©v,* and (¢ , while the second condition 18 realized if v,* is
between v,” and ¢ . Analysis of (2.8} also
shows that either vg* and v,~ are both
greater or they are both smaller than ¢ .

¥
The relationship between shock wave speed
and Jjump magnitude 1s shown in Fig.l, where
v and y are as given in (2.8).
g ¥ For transverse shock wave propagation,
Fig. 1 Equatlons (1.15), (2.3) and (2.7) lead to
— 9
{0ap* — (Og* — 20 (v3 — G)? -+ 2p) Sag} [vp] = O (2.9)
Setting the determinant of this system equal to zero, we obtain (2'1£»

20 (G — vg)? = 21 — (0* + 0" — 2035%) &= {(o* — 045%)% + (20%)7”
It follows from (2.10) that transverse shock waves may propagate in a
hypoelastic medium with two speeds which are close to the speed of transverse
sound waves and independent of the hydrostatic pressure.
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3. Let us examine the structure of a transverse shock wave in a Kelvin
medium [10], for which [us,s] = O . The defining equations take the form
Gij = (Aepy -+ Eenr) 045 + 2uey; 1 2mey; (3.1)
The Almansi tensor of finite deformation 1is given by (9]

2e5; = Uy,j -+ Uji— Un,illn,j (3.2)
The coordinate system in the x,x; plane is orlented so as to make

{uz.5] = O . The expression for the speed in terms of the distortion tensor
may be obtained from

U= _66_1?- — Gui, 3 + vku-i’k (3'3)

Substituting (3.1) into (1.13) and making use of (3.2) and (3.3), we
obtain

Nv,s = B (3 — u1,5") (a3 — Ur,a7) — QU — @y (3.4)
B = %(1 — uy, 1) {Us, 13,8 4 Uz, 1 (1 — Uz 2)}

Here A 1s the determinant of the system of Equatilons (3.3).

For the steady case, (3.4%) ylelds a quadratic equation from which the
shock layer thickness » may be determined

ah? 4 B [us lh — 7 [l = 0 (3.5)

Here (3.6)

a=4(G—v)u3*—A, 1=4m(G—vy), A=p(v;— G) [uynl
A= — 5 p(G—vy) [u? ], 4+ p(G—vs)va[uy g1 —pv; ,(G—vs) [Uy3]

Of the two roots obtained, hn, and h, , the positive 1s to be chosen.

Integrating (3.4), we obtain the variation of v, across the shock layer,
while the variation of o,s as functlon of x, 1s obtained from (3.1). The
remaining velocity and stress components are continuous within small strain
accuracy. The effect of the small quantitles ¢ and o, on the shock layer
thickness in (3.5) 1is indicated by the coefficient o

The propagation and structure of shock waves in elastoplastic media may
be investigated in a similar manner, by adjolning various viscous elements
to the rheological model.
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